Code: EC5T3

III B. Tech - I Semester – Regular Examinations - November 2015

DIGITAL COMMUNICATONS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Answer any FIVE questions. All questions carry equal marks

1 a) What is Companding? Explain the Companding in PCM.

7 M

- b) A television (TV) signal with a band width of 4.2 MHz, is transmitted using binary PCM. The number of representation levels is 512. Calculate the following parameters
 - 7 M

- i) The code word length
- ii) The final bit rate
- iii) The transmission band width assume that k=2.
- 2 a) Explain how QPSK signals are generated.

7 M

- b) Bring out the differences between DPSK and DEPSK. 7 M
- 3 a) Explain the basic structure of a binary base band receiver 7 M with a neat block diagram.

	b)	Derive the error probability of coherent BPSK.	7 M
4		What is spread spectrum modulation? Explain the generation of PN Sequence.	7 M
	b)	Explain the Applications of Direct Sequence Spread Spectrum signals.	7 M
5	a)	Discuss in brief about Discrete messages.	7 M
		One of the five possible messages Q_1 to Q_5 having probabilities $1/2$, $1/4$, $1/8$, $1/16$ and $1/16$ respectively, is transmitted, calculate the average information.	7 M
6	a)	State and explain Shannon's Theorem.	5 M
	b)	Plot channel capacity C versus B (Band width), with $S/\eta=$ constant for the Gaussian channel.	4 M
	c)	ne channel band width B=5KHz, and a message is be smitted with R=10 ⁶ bits per second. Find S/η for	eing
		$R \leq C$.	5 M
7	a)	Briefly explain about BCH codes.	5 M
b) Taking x^3+x+1 as the generated polynomial for $(7, 4)$			yclic

linear block code. Determine the code vectors in systematic

form for the following message sequence.

9 M

- i) 1011
- ii) 1110
- iii) 1111
- 8 a) Compare the convolutional codes with linear Block codes.

6 M

b) Explain the time domain and frequency domain approach of convolutional encoder with an example. 8 M